PyData Seattle 2025

Allison Ding

Allison Ding is a developer advocate for GPU-accelerated AI APIs, libraries, and tools at NVIDIA, with a specialization in large language models (LLMs) and advanced data science techniques. She brings over nine years of hands-on experience as a data scientist, focusing on managing and delivering end-to-end data science solutions. Her academic background includes a strong emphasis on natural language processing (NLP) and generative AI. Allison holds a master’s degree in Applied Statistics from Cornell University and a master’s degree in Computer Science from San Francisco Bay University.


Session

11-09
09:00
90min
Scaling Large-Scale Interactive Data Visualization with Accelerated Computing
Allison Ding

As datasets continue to grow in both size and complexity, CPU-based visualization pipelines often become bottlenecks, slowing down exploratory data analysis and interactive dashboards. In this session, we’ll demonstrate how GPU acceleration can transform Python-based interactive visualization workflows, delivering speedups of up to 50x with minimal code changes. Using libraries such as hvPlot, Datashader, cuxfilter, and Plotly Dash, we’ll walk through real-world examples of visualizing both tabular and unstructured data and demonstrate how RAPIDS, a suite of open-source GPU-accelerated data science libraries from NVIDIA, accelerates these workflows. Attendees will learn best practices for accelerating preprocessing, building scalable dashboards, and profiling pipelines to identify and resolve bottlenecks. Whether you are an experienced data scientist or developer, you’ll leave with practical techniques to instantly scale your interactive visualization workflows on GPUs.

Tutorial Track 3